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Appendix to ‘Probabilistic Precipitation Forecast Postprocessing Using Quantile 2 

Mapping and Rank-weighted Best-Member Dressing:   3 

Description of the CSGD method. 4 

 5 
Here we describe the modifications of the Censored, Shifted Gamma Distribution 6 

method by Scheuerer and Hamill (2015) made in order to address the particular challenges of 7 

this study. 8 

 9 
The original CSGD approach started with quantile mapping the forecasts, enlarging the 10 

ensemble by including forecasts at nearby grid points, and calculating a number of ensemble 11 

statistics. We perform the same three steps here, but in doing so we proceed as described in 12 

Section 3b of this paper and not as proposed by SH15. Some of the ensemble statistics 13 

considered here are also slightly different: we still use the ensemble mean , and the fraction 14 

of non-zero ensemble members , but as a measure of ensemble spread we use the 15 

standard deviation  instead of the mean absolute difference. We do not use precipitable 16 

water as a predictor here. 17 

The second step in the procedure described by SH15 is to fit climatological CSGD 18 

parameters - separately for each month, each lead time, and each grid point - to the analyzed 19 

precipitation amounts used for training. Here, we do this using analysis data from 2002 to 2017 20 

and a slightly different model fitting approach. As in SH15, for each month the training data is 21 

composed of the 45 days before and after the 15th of each month. From these data, we 22 
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calculate the climatological mean  and the climatological fraction of zero (here < 0.254 mm) 23 

precipitation analyses .  We choose the shape parameter  of the climatological CSGD 24 

such that the continuous ranked probability score (CRPS) over the training sample is minimized, 25 

while the scale parameter  and the shift parameter  are chosen such that the CSGD 26 

defined by those three parameters has the prescribed climatological mean  and 27 

climatological fraction zero  . Specifically, denote by  the cumulative distribution 28 

function (CDF) and by  the probability density function of a gamma distribution function with 29 

shape parameter . Let  be the inverse CDF and define . For a 30 

given , the parameters   and  can then be calculated via 31 

 32 

 33 

 34 
The climatological shape parameter  is then found via CRPS minimization as described in 35 

SH15. In contrast to their original suggestion, minimization is now performed over a 1-36 

dimensional (instead of 3-dimensional) parameter space, and is therefore computationally more 37 

efficient. Moreover, the three quantities , , and  have an intuitive interpretation and 38 

can be assumed to have a smooth annual cycle. We can therefore linearly interpolate them from 39 

the 15th of each month to every single day of the year, and calculate the climatological CSGD 40 

parameters  and  from eqs. (1), (2) in SH15 from the interpolated values of , , 41 

and . 42 
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The final step in SH15 is to link the CSGD parameters of the calibrated forecast 43 

distribution at grid point s to the ensemble statistics at s defined in the first step. In the present 44 

setup, we use the following regression equations 45 

 46 

, 47 

, 48 

, 49 

 50 

where , , and   is the 51 

climatological average of the ensemble mean  of the quantile-mapped forecasts. Due to the 52 

quantile mapping, we can assume , where  is the climatological mean of the 53 

analyzed precipitation at s. The regression equations above differ from those used in SH15 in a 54 

number of ways. First, there are only six regression parameters since there is no precipitable 55 

water predictor and since the heteroscedasticity parameter was fixed to 0.5 (a simplification 56 

suggested by SH15). Second, due to the limited training sample size and the challenges that 57 

come with the estimation of a rather complex model, the regression parameters  58 

are assumed constant across the entire domain, and estimated in a single CRPS minimization. 59 

As explained in SH15, one of the motivations for incorporating the climatological CSGD 60 

parameters  and  into the regression equations is that this removes some of the local 61 
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characteristics. One characteristic that is not captured that way is the local forecast skill of the 62 

NWP model, which can vary substantially across the domain. By assuming  63 

constant in space, these parameters cannot account for spatially varying skill either, and this 64 

motivated the inclusion of a spatially varying skill parameter . This parameter is defined as the 65 

correlation between the mean of square-root transformed, quantile-mapped ensemble forecasts 66 

and square-root transformed analyzed precipitation amounts. The calculation is performed with 67 

the same training sample used for estimating the regression parameters, but each analysis grid 68 

point was supplemented by the best 19 supplemental locations found as described in Section 69 

3a. The particular way of including  in the regression equations above is motivated by 70 

standard regression theory. If two variables have correlation , the slope parameter for 71 

regressing one of them on the other is proportional to , and the unexplained variance is 72 

proportional . Relating the intercept parameter to  is more challenging in the present 73 

context; we chose the expression  since it ensures that the intercept is always 74 

positive, is equal to 1 if there is zero skill, and tends to zero as skill increases. With these three 75 

changes, we hope to strike a balance between parsimonious parameterization - which is 76 

necessary in a situation with limited training data - and sufficient flexibility to address local 77 

characteristics of the different analysis grid points within the CONUS. 78 

 79 


